Optimized Threshold Implementations: Minimizing the Latency of Secure Cryptographic Accelerators

Dušan Božilov, Miroslav Knežević, Ventzislav Nikov

November 13 ${ }^{\text {th }}, 2019$

Threshold Implementations (TI)

- Boolean masking scheme
- Glitch resistant
- Three key properties
- Correctness
- Non-completeness
- Uniformity
- Two variants
- td + 1
- d + 1

- Number of input shares is always $d+1$, where d is security order
- Number of output shares depends on the algebraic degree t as well, and is lower bound by $(d+1)^{t}$

$$
\begin{aligned}
& y=a b \\
& y=\left(a_{0}+a_{1}\right)\left(b_{0}+b_{1}\right) \\
& y_{0}=a_{0} b_{0} \\
& y_{1}=a_{0} b_{1} \\
& y_{2}=a_{1} b_{0} \\
& y_{3}=a_{1} b_{1}
\end{aligned}
$$

Tl properties

- Tl should preserve the functionality of the operation we are trying to protect (correctness)
- Any input share may appear only once in any given output share

$$
\begin{aligned}
& y_{2}=a_{0} b_{1}+a_{0} \\
& y_{3}=a_{0} b_{2}+a_{-} 1 c_{-} 0
\end{aligned}
$$

- Output should preserve the distribution of the input (Uniformity)
- Mandates registers between non-linear operations
- Requires randomness injection at the end of every non-linear operation if the result is compressed afterward

S-Box decomposition

From sharing to table

$$
\begin{aligned}
& y_{0}=a_{0} b_{0}+c_{0} \\
& y_{1}=a_{0} b_{1} \\
& y_{2}=a_{1} b_{0} \\
& y_{3}=a_{1} b_{1}+c_{1}
\end{aligned}
$$

- Rows represent one output share and columns represent input variables
- Values represent allowed input share in the output share of a given variable
- Number of variables is the number of columns in the table

From table to sharing

$$
\begin{gathered}
c \\
\begin{array}{c}
y=a b+a c+b c \\
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 1 & 1 \\
* & 0 & 1 \\
* & 1 & 0
\end{array}\right) \begin{array}{l}
y_{0}=a_{0} b_{0}+a_{0} c_{0}+b_{0} c_{0} \\
y_{1}=a_{0} b_{1}+a_{0} c_{1}+b_{1} c_{1} \\
y_{2}=a_{1} b_{0}+a_{1} c_{0} \\
y_{3}=a_{1} b_{1}+a_{1} c_{1} \\
y_{4}=b_{0} c_{1} \\
y_{5}=b_{1} c_{0}
\end{array}
\end{array} .
\end{gathered}
$$

- Number of shares is higher than the lower bound of $(d+1)^{t}=4$

From table to sharing

- Table implicitly satisfies the non-completeness property
- However, we need to check for correctness
- For each monomial in the ANF all combinations of its share indices are present

$$
y=a b+a c+b c+a b c
$$

Table of a n-bit function of degree t

- Table is optimal if it has the minimum number of rows while still satisfying correctness property
- A table D can be used to share any n-bit function of degree t iff every monomial of t input variables can be shared correctly
- For any chosen t columns from D all input share combinations are present
- Optimal sharing is not unique, hence multiple optimal tables exist
- Two tables D_{1} and D_{2} are conjugate if there they are both optimal but they contain no same row between the two of them

Optimal sharing of a 2-bit function of degree 1 for any order d

- Number of rows is $d+1$
- Trivial solution where i-th row is equal to (i, i)
- We can create $d+1$ conjugate table by rotating the index in the second column

Optimal sharing of n-bit functions of degree n -1 for any order d

- Start from optimal conjugate $d+1$ tables for $n=2$ of degree 1
- Given $d+1$ optimal conjugate tables with n columns for functions of degree $n-1$ construct $d+1$ optimal conjugate tables with $n+1$ columns for functions of degree n
- Start from $d+1$ optimal and conjugate tables D_{0}, \ldots, D_{d} with n columns and $(d+1)^{n-1}$ rows
- Obtain tables T_{0}, \ldots, T_{d} with $n+1$ columns and $(d+1)^{n}$ rows
- For T_{j} append a column to D_{i} where each value is equal to $i+j \bmod (d+1)$ and add them as new rows in T_{j}

Example for $n=3$ and $d=2$

$$
\begin{aligned}
& D_{0}=\left(\begin{array}{ll}
0 & 0 \\
1 & 1 \\
2 & 2
\end{array}\right), D_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 2 \\
2 & 0
\end{array}\right), \mathrm{D}_{2}=\left(\begin{array}{ll}
0 & 0 \\
1 & 1 \\
2 & 2
\end{array}\right)
\end{aligned}
$$

Application to PRINCE cipher

- We have applied our sharing construction to TI of PRINCE cipher
- S-Box is of degree 3 with 4-bit input
- First and second order implementation
- Compared to the previously known PRINCE TI where S-Box decomposition is used

DOM-like remasking of first order TI PRINCE

- Obtained shares have complementary domains that can use the same randomness

$$
\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1
\end{array}\right) \begin{gathered}
+0 \\
+R_{1} \\
+R_{2} \\
+R_{3} \\
+R_{3} \\
+R_{2} \\
+R_{1} \\
+0
\end{gathered}
$$

Results

- We clearly outperform the previous PRINCE TI implementation with respect to latency
- First order implementation consumes less energy despite higher power consumption

PRINCE	Area $@ 10 ~ M H z$ (GE)	Power $@ 10 \mathrm{MHz}$ (uW)	Energy $@ 10 \mathrm{MHz}$ (pJ)	Rand/ Cycle $($ bits $)$	Clock (cycle)	$f_{\max }$ (MHz)	Latency $@$ $f_{\max }$ (ns)
Unprotected	3589	59	71	0	12	393	30.5
$[14] 1^{\text {st }}(t d+1)$ with S-box decomp.	9484	66	264	0	40	432	92.6
$1^{\text {st }}(d+1)$ w/o S-box decomp.	11596	100	241	48	24	376	63.8
$2^{\text {nd }}(d+1)$ w/o S-box decomp.	32444	374	898	1728	24	385	62.4

TVLA of first order implementation

Future work

- Explore other cases where degree of the n -bit function is $\mathrm{n}-2$ or smaller
- Application to other use cases
- Remasking optimization considerations

Thank you!
Questions

